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Abstract. We propose and study a model where two aspects are present: parity conservation and infinitely
many absorbing states. Whereas steady-state simulations show that the static critical behaviour is not
affected by the presence of multiple absorbing configurations, the influence of the initial state associated
with the presence of slowly decaying memory effects is clearly displayed in time dependent simulations. We
report results of a detailed investigation of the dependence of critical spreading exponents on the initial
particle density.

PACS. 64.60.-i General studies of phase transitions – 64.60.Ht Dynamic critical phenomena –
02.50.-r Probability theory, stochastic processes, and statistics

Various nonequilibrium models exhibiting phase transi-
tions from an active to an absorbing phase have been ex-
tensively investigated over recent years [1–4].

Most of them [5–10] have been shown to belong to the
universality class of directed percolation (DP) [11]. These
studies gave support to the conjecture made by Janssen
and Grassberger [12,13] that continuous transitions to an
unique absorbing state generically fall in the DP class.
The same applies, as far as the static critical behaviour
is concerned, to various models with multiple absorbing
states [14–16]. However, the dynamic critical properties
of these systems are found to be non-universal: in fact,
spreading critical exponents depend on the initial density
and obey a generalized hyperscaling relation derived by
Mendes et al. [16]. Some systems, first claimed to have a
different critical behaviour, were later included in the DP
class, upon a more careful analysis [8,9].

For sometime the only accepted exceptions to the DP
universality class were the models A and B introduced by
Grassberger and collaborators [17,18]: they both have a
doubly degenerated absorbing state and modulo 2 parity
conservation of kinks (-00- and -11-s). Since then, a grow-
ing number of models whose critical behaviour falls in the
parity conserving (PC) universality class have been stud-
ied. One of the first to be considered was the branching
annihilating random walk with an even number m of off-
springs (BAW) [10,19–21]: in this case, the parity of the
particles is conserved and there is a single absorbing state.
Another system extensively studied is the nonequilibrium
Ising model with combined spin-flip and spin-exchange
dynamics (NEKIM) [22]; here, the absorbing state is
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symmetrically doubly degenerated and the kinks have lo-
cal parity conservation, similarly to what happens with
the A and B models referred above. Other models have
since been discovered and shown to display PC critical
behaviour: the interacting monomer-dimer model [23] and
generalizations of the Domany-Kinzel automaton with n
equivalent absorbing states [24]. In these models, parity
is not strictly conserved but there is complete symmetry
among absorbing states; actually, if this symmetry is bro-
ken, DP critical behaviour is recovered.

Therefore, the question about the essential feature be-
hind PC critical behaviour is not yet settled. Whereas in
BAW models mass conservation of modulo 2 is determi-
nant, in the other cases symmetry among absorbing states
plays the relevant role. In the NEKIM model, parity con-
servation in the number of kinks is not sufficient to ensure
PC-like behaviour, if such symmetry is broken[22].

Recently, Inui and Tretyakov [25] presented a new ver-
sion of a contact process with parity conservation, which
displays a phase transition for m = 2, contrarily to what
happens with the original version of BAW . They claim,
on the basis of Padé approximants and also numerical sim-
ulations, that the order parameter exponent β should be
1, while the values estimated by different authors are con-
sistently smaller [19,23,24].

In this article, we consider a model that resembles the
pair-contact process (PCP) introduced by Jensen [14], but
where the number of dimers is conserved modulo 2. Dimers
cannot be generated spontaneously, therefore any configu-
ration with isolated particles and empty sites is absorbing,
and there is an infinite number of such configurations [26].
This enables one to study the way initial configurations
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affect the spreading critical exponents in a system that
belongs to the PC-universality class.

Initial conditions were shown [27] to affect time-
dependent critical exponents that describe the dam-
age spreading transition (DS) in cases where this one
coincides with the ordinary critical point; in DS, one fol-
lows the evolution of two replicas, so this can be seen as a
multicomponent system, and any state where both repli-
cas are identical is considered as absorbing.

We start by briefly reviewing the dynamic rules for the
PCP. This is a lattice model which can be described by a
2-state variable σi = 0, 1. Nearest-neighbour pairs of par-
ticles (dimers) annihilate each other with probability p or
create,with probability 1−p, a particle at one of the adja-
cent (vacant) sites to the dimer. The annihilation of a pair
may imply the loss of one or two other pairs, if one (or two)
of the nearest-neighbour sites to the chosen dimer happen
to be occupied; analogously when a particle is created ad-
jacent to a dimer, the number of pairs increases by one
or two, depending on the occupancy of the other nearest-
neighbour to the site that is being occupied. It is therefore
clear that there is no parity conservation in the number
of dimers and the model displays a DP-like phase transi-
tion from an active state with a nonzero concentration of
dimers (for p < pc) to a phase with infinitely many ab-
sorbing states (for p > pc). Critical spreading exponents
are non-universal depending upon the nature of the initial
configuration.

In the one-dimensional model we now introduce, a
phase with infinitely many absorbing states is also present.
On the other hand, dynamic rules are such that there is
parity conservation in the number of dimers. This seems
to be the most relevant feature; indeed, we find that the
static critical behaviour of this model is PC-like, thus it is
not affected by the presence of multiple absorbing states.

The basic processes are again annihilation and cre-
ation, which are attempted with probabilities p and 1−p,
respectively. If one chooses to annihilate, then one dimer
(represented by • = •) is selected at random and one looks
for an adjacent dimer. If the pair of dimers is surrounded
by empty sites (◦), then the two dimers are annihilated
and the respective sites become empty (− ◦ −• = • =
•−◦− → −◦−◦−◦−◦−◦−); otherwise, annihilation is pro-
duced by simply vacating the site that is shared by the two
dimers, leaving the other sites unchanged (− ◦ −• = • =
• = •− → − ◦− • − ◦ −• = •−). In this way, the number
of dimers is conserved modulo 2. In case of a creation at-
tempt, then if the nearest and next-nearest-neighbour sites
of a selected dimer are, respectively, vacant and occupied,
a pair of dimers is produced by simply occupying that va-
cant site (−• = •−◦−•−◦−→ −• = • = • = •−◦−); an-
other possibility requires the presence of three vacant sites
adjacent to a dimer, in which case a pair of dimers is cre-
ated (with probability α) by filling the nearest and next-
nearest-neighbour sites and leaving the third vacant site
unchanged (−• = •−◦−◦−◦−→ −• = • = • = •−◦−).
When α < 1, growth is less effective if vacant sites (rather
than isolated particles) exist in the environment that sur-
rounds dimers, whereas in the case α = 1 growth is not
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Fig. 1. Log10-log10 plot of the concentration of dimers, ρ
versus pc − p, with pc = 0.2990.

affected by the concentration of isolated particles in the
environment. In the present work, we have fixed α = 1/2.

There is in fact a conservation law in the dynamics
above [28]. This can be seen in the following way: divide
the chain into two sublatticesA and B and let NAB (NBA)
be the total number of dimers with left particle on the A
(B) sublattice. Then N = NAB −NBA is conserved since
dimers are created and destroyed in pairs on adjacent pairs
of sites. Thus configurations with different values of N are
not connected by the dynamics.

With these rules, diffusion is only indirectly present.
Also, the annihilation of isolated dimers is here possible
only through successive processes of creation and annihi-
lation, which slows down the dynamical processes lead-
ing to absorbing configurations. One can of course en-
large the parameter space to include diffusion or longer
range processes and consider a dynamics that mixes up
sectors in the phase space with different values of N . We
have not done it in the present work. In the absence of
such processes, creation of dimers is inhibited in config-
urations where a pair of vacant sites is surrounded by
occupied sites. Initial configurations have therefore been
chosen such that this situation does not occur in the dy-
namical process, this meaning a restriction to the N = 0
sector.

The order parameter of the system is the concentration
of dimers, which vanishes algebraically as p approaches the
critical probability pc:

ρ ∼ (pc − p)β (1)

where β is the order parameter exponent.
Simulations were started with a fully occupied lattice

and the concentration averaged over a long period of time
once the steady state has been reached.

In Figure 1 we show a log-log plot of the steady state
concentration as a function of pc − p for system size
L = 2000; time varied from t = 5000 to t = 2× 105 MCS
closest to pc(= 0.2990(10)) and we averaged over around
1000 independent samples which had not yet entered the
absorbing state. From the slope of the data we estimate
β = 0.98(5), a value which agrees with the results of [25]
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Fig. 2. Log10-log10 plot of ρ(pc, L) versus L (L = 250, 500,
1000 and 2000).

and is slightly above the values obtained by other authors
for models in the PC universality class. Determining the
critical point by steady state simulations requires an accu-
rate measurement of the order parameter near criticality,
which becomes rather difficult due to the critical slowing
down.

We have complemented this study with a finite-size
scaling analysis based on the ansatz that the order
parameter depends on system size L through the ratio
of L and the correlation length ξ ∼ ∆−ν⊥ :

ρ(p, L) ∼ L−β/ν⊥f(∆L1/ν⊥) (2)

(with f(x) ∝ xβ for x→∞, so that (1) is recovered when
L→∞).

Accordingly,

ρ(pc, L) ∝ L−β/ν⊥ . (3)

In Figure 2, we show a log-log plot of ρ(pc, L) as a function
of L; a straight line is obtained, from the slope of which
we estimate β/ν⊥ = 0.54 (4), to be compared with 0.48
and 0.50 as obtained in [23,19], respectively.

We also report results of critical spreading, i.e. the
evolution of the critical system from a configuration that
is very close to an absorbing state. In the present model,
there are many absorbing configurations and some critical
spreading exponents are indeed dependent upon the den-
sity of particles in the initial state. The quantities that are
usually considered in these studies are the surviving prob-
ability P (t), the number of dimers n(t) averaged over all
runs, and the mean-square distance of spreading R2(t) av-
eraged over the surviving runs. At criticality, these quanti-
ties obey, in the long time limit, P (t) ∼ t−δ, n(t) ∼ tη and
R2(t) ∼ tz , and the corresponding exponents can be ob-
tained from the straight lines shown in double-logarithmic
plots of the quantities against time. More precise estimates
are usually obtained by looking at local slopes, for exam-
ple −δ(t) = ln[P (t)/P (t/m)]/ln(m). In a plot of the local
slopes vs. 1/t, the critical exponents are given by the in-
tercept of the curves for pc with the vertical axis, whereas
curves for p > pc (p < pc) veer downward (upward). This

often constitutes a rather accurate method for the deter-
mination of pc. It is certainly the case when one or just
a few absorbing states are present [23,29]. Also in some
systems with infinitely many absorbing states, the critical
point was shown not to depend on the initial configura-
tion and can therefore be located by the procedure we just
described [16]. In other cases, indications of a slight de-
pendence of the critical point (as determined by the above
time-dependent analysis) on the initial configuration have
been found [30,31] and can be attributed to slowly decay-
ing memory effects [32]. This seems to occur also in the
present case.

In these simulations we started the system in a way
that a sublattice of alternating sites is vacant except for
one central site, and the sites of the other sublattice are
occupied with probability q; the two nearest-neighbours
of the central site are also occupied, thus constituting a
perturbation of exactly two dimers. The size of the lattice
was chosen such that the spreading never hits the bound-
aries. For different q values, a number of independent runs,
typically 107, were performed, up to 4000 time steps each,
and various values of p.

A local slope analysis for q = 0.43 leads to the esti-
mate pc = 0.2995(5), which is fully consistent with the
pc estimate from steady-state simulations, above; the esti-
mates for the dynamic scaling exponents are η′ = 0.005(5),
δ′ = 0.291(6), z′/2 = 0.570(6) and agree well with previ-
ous results for models in the PC universality class [19]
(η = 0.000(1), δ = 0.285(2), z/2 = 0.571(1)). This is
similar to what happens in the pair-contact process: DP
time-dependent exponents are found if one studies spread-
ing of a perturbation to the “natural” configuration, the
one spontaneously generated by the critical dynamics. The
estimate qnat = 0.43(2) (qnat meaning the value of q that
corresponds to the density in the natural configuration) is
in good agreement, within numerical accuracy, with the
one obtained by generating the natural configuration in
samples of size L = 2000, starting with a full lattice and
using periodic boundary conditions.

For different q values, power laws still hold, but with
different critical spreading exponents, and a slight shift
of the critical point. In Figure 3 we show the local slope
analysis for q = 0.2, leading to the following estimates:
δ′ = 0.366(6), η′ = −0.069(5), z′/2 = 0.567(6), p′c =
0.3000(5). The generalized hyperscaling relation η′ + δ′ −
z′/2 = −δ [16] is well satisfied by these values.

Our results for the q-dependence of p′c, δ
′, η′ and z′/2

are given in Table 1. A check of the generalized hyper-
scaling is also included. Indeed, the exponent z′ does not
present a significative dependence on the parameter q,
given the numerical errors. Then, as expected, the expo-
nent governing the population growth in surviving critical
trials, δ′ + η′, does not depend on the initial particle con-
centration.

In conclusion, we have performed a similar study to
what has been done before [14] for the PCP (and other
models with multiple absorbing states [16]) but now a sys-
tem with parity conservation (in the number of dimers) is
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Table 1. The table shows the q-dependence of the critical parameter p′c and critical exponents δ′, η′ and z′/2. A test of
generalized hyperscaling is also included.

q p′c δ′ η′ z′/2 η′ + δ′ − z′/2 + δ

DP - 0.1597(3) 0.312(2) 0.632(1) 0.000(1)

PC - 0.285(2) 0.000(1) 0.571(1) −0.001(1)

0.1 0.3005(5) 0.400(6) −0.106(5) 0.570(6) 0.01(2)

0.2 0.3000(5) 0.366(6) −0.069(5) 0.567(6) 0.02(2)

0.43 0.2995(5) 0.291(6) 0.005(5) 0.570(6) 0.01(2)

0.45 0.29935(5) 0.284(6) 0.014(5) 0.570(6) 0.01(2)

0.5 0.2990(5) 0.271(6) 0.033(5) 0.572(6) 0.02(2)

0.6 0.2990(5) 0.239(6) 0.062(5) 0.573(6) 0.01(2)

0.8 0.2985(5) 0.181(6) 0.126(5) 0.576(6) 0.02(2)

0.9 0.2985(5) 0.156(6) 0.154(5) 0.579(6) 0.02(2)
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Fig. 3. Local slopes −δ′(t) (upper panel), η′(t) (midle-panel)
and z′/2(t) (lower panel) for q = 0.2. Each panel contains five
curves with, from bottom to top, p = 0.2980, 0.2990, 0.3000,
0.3010 and 0.3020.

for the first time investigated. A field theory formalism to
appropriately describe this situation is now required.

Whereas the presence of multiple absorbing states
does not affect the static behaviour, spreading critical be-
haviour is expressed by power laws whose exponents de-
pend on the initial particle density (= q/2). There is also
a monotonic shift in p′c, which, when found in other sys-
tems, has been attributed [31] to slowly decaying memory
effects displayed by the non-order field. The generalized
hyperscaling relation is verified.

The role played by the conservation law in N is not
clear from the present study [33]. Further investigation by
considering a dynamics that mixes up sectors with differ-
ent N values is planned.

A possible mapping of this system to a SOC model[34]
is currently under study.
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